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f ABSTRACT A
ALet g be any local property (e.g., gray level or

gradient magnitude) defined on a digital picture. Let
p (z) be the relative frequency with which g has value z.
A each point (x,y) of the picture we can display pg(g(x,y)),
appropriately scaled; the result is called the pg-transform
of the picture. Alternatively, we can use joint
or conditional frequencies of pairs of local properties
to define transforms. This note gives examples of such
transforms for various g's and h's and discusses their
possible uses and limitations.
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1. Introduction

Haralick [1] has introduced a "texture transform" which

measures the "typicality" of each point's neighborhood in a

digital picture. It is defined as follows: For each pair of

gray levels z,w, and any given unit displacement A=(Ax,Ay), let

P (z,w) be the relative frequency with which pairs of points

((x,y),(x+Ax,y+Ay)) have the pair of gray levels (z,w). (Thus

p6(zw) is the (z,w) element in the "cooccurrence matrix" for

displacement A.) By definition, p (z,w) is high if gray level

z occurs often adjacent (in direction A) to gray level w. Let

N be the set of displacements A corresponding to the eight

neighbors of a point. Then the texture transform of the given

picture is the array whose value at (x,y) is

1 Ep g(XY~ g(x+AX,y+Ay))*

Evidently this is high if g(x,y) is a "typical" neighbor of its

neighbors. For example, it should be high in the interiors of

large, uniform regions, and low at region borders. The texture

transform can be displayed as a picture by appropriately scaling

its values.

This note presents a general class of "texture transforms"

in which we use frequencies of arbitrary local property values,

*Haralick gives a more general definition in which an arbitrary
function of P can be used; but the simplified definition given
above is sufficient for our purposes.



rather than joint frequencies of pairs of gray levels. We call

the result a "probability transform", since its values are

relative frequencies, which can be regarded as probability esti-

mates. The general definition, and some examples, are given in

Section 2. In Section 3 we briefly consider "second-order

probability transforms" whose values are the joint or condition-

al relative frequencies with which a pair of local properties

has a given pair of values.



2. First-order probability transforms

Let g be any local property (e.g., gray level, gradient

magnitude, etc.) defined on a digital pictures. Let pg(Z) be

the relative frequency with which g has value z. The p -transform

of the picture is simply tae array of values pg (g(x,y)). This

array can be displayed as a picture after appropriate rescaling.

Figure 1-9 show the p -transforms of a set of pictures for

the following local properties:

a) gray level: g(x,y) = f(x,y)

b) local average gray 1tvel: g(x,y) Z f(x+Ax,y+Ay)=F(x,y)9 L EN

(the average is taken over the 3-by-3 neighborhood

centered at (x,y))

c) Laplacian magnitude: g(x,y) = jf(x,y)-f(x,y)j

d) gradient magnitude: g(x,y) = max[jf(x,y)-f(x+l,y+l)I,

if(x+l,y)-f(x,y+l)

The properties themselves are displayed as parts (a-d) of each

figure, and the corresponding transforms as parts (e-h).

The general nature of a pg-transform can be predicted from

a knowledge of the histogram of g(x,y) values. The following

are some simple examples:

(1) If the g(x,y) histogram is flat, the relative frequencies

are all equal, so that pg(g(x,y)) is a constant.

(2) At the other extreme, if the g histogram consists of a

few spikes, then pg(g(x,y)) too has only a few distinct values,

which depend on the heights of the spikes.



(3) Suppose that the g histogram is monotonic, e.g., the

histogram of gradient or Laplacian magnitudes, for most pictures,

looks like a negative exponential with values decreasing sharply

from a maximum at z=0. Then the pg values are also all distinct,

and the pg-transform can be regarded as a nonlinear rescaling

(and complementation) of the original g values.

(4) More generally, let the g histogram be unimodal. If

the peak is symmetric, then the pairs of equally frequent values

map into the same pg value; thus the pg -transfrm can be regarded

as "folding over" the g values and then nonlinearly rescaling

them. If the peak is nonsymmetric, but still monotonic on each

side, the rescaling affects the two sides differently. In part-

icular, if there is a flat shoulder on one side of the peak,

all g values on that shoulder map into a constant.

(f) Finally, suppose that the g histogram is bimodal. If

the peaks are equal and symmetric, we have quadruples of equally

frequent values, so that the pg-transform can be regarded as a

double folding and rescaling of the g values. If the peaks are

unequal, the pg values into which the small peak maps are a

subset of those into which the large peak maps.

We can now comment on the examples shown in Figures 1-9

in the light of these general remarks. The histograms for the

pictures in Figures 1-9 are shown in Figures 10-18.



a-b,e-f) For the first four pictures, there is a large peak

in the histogram of gray levels or local average gray levels,

representing background points. In the handwriting and chromo-

some pictures, the object points are represented by a small,

separate peak; in the cloud picture, by a relatively flat

shoulder; and in the tank picture, by a shallower-sloping flank.

Thus for the tank picture, for example, most of the low-probabi-

lity points come from the tank rather than from the background,

so that the transform yields a roughly complemented picture on

a noisier background. For the cloud picture, the cloud points

map into a relatively constant value corresponding to the

relatively low probability of the flat shoulder. The results

for the chromosome picture are more interesting; the cross-

sections of the chromosomes evidently contain a flat zone en-

circling their centers, and points in this zone have relatively

high frequencies, so that they are slightly darker in the trans-

from. For the terrain pictures (Figs. 5-9), the transform produces

a remarkable enhancement; but the results are sensitive to noise.

(compare Fig. 6 with Fig. 5).

c-d, g-h) The histograms of gradient and Laplacian values

for all the pictures all decline sharply from a peak at zero, so

that these g-transforms of the pictures are essentially rescaled,

complemented displays of the gradient or Laplacian magnitude.



In [2] it was shown that probability transforms may be of

some value in smoothing a picture. For example, suppose that

we average each point with those k of its neighbors that have

highest frequencies of occurrence. If a point is near a region

border, this will tend to average it with neighbors that are

interior to the region, so that the averaging should not blur

the border.

The situation is more complicated with regard to using prob-

ability transforms for segmentation. Our examples show that

small differences in the original may be enhanced on the trans-

form; but the "folding" in the transforms confounds values that

were originally easy to distinguish. It appears that the value

of probability transforms for segmentation must be assessed on

a case by case basis.

The histogram of a g-transform will usually not be very

useful as an aid in segmenting the transform. To see why, note

that the number of points having value v in the transform must

be a multiple of v. In fact, a point has value v in the g-transform

iff its g-value in the picture occurred with frequency proportional

to v, so that the number of such points is proportional to v.

The proportionality factor depends on how many g-values in the

picture had that same relative frequency. If values having the

same frequency are rare, the proportionality factor will always

be the same, and the histogram of the transform will be ramplike.



(it will not be a solid ramp, since not every frequency of

occurrence will actually occur; but it will be a set of spikes

whose envelope is a ramp.) When two g-values do have the same

frequency, the corresponding spike is doubled in height. These

remarks were confirmed by the histo~gram shown in Figures 10-18.



I

3. Second-order probability transforms

Let g and h be any local properties defined on a digital

picture, and let Pgh(ZlW) be the relative frequency with which

g has value z, given that h has value w. The array of values

Pgh (g(x,y)lh(x,y)) will be called the Pg h transform of the

picture. Similarly, let Pgh(Zw) be the relative frequency

with which g and h have the pair of values (z,w); the array

Pgh(g(x,y),h(x,y)) will be called the picture's p htransform.

If we let h(x,y) = g(x+Ax,y+Ay), we see that p defined oin

Section 1 is a special type of pgh' and that Haralick's texture

transform is just the average of eight such Pgh-transforms,

one for each neighbor.

Figures 19-27 show the pgh and p gh transforms of the same

set of pictures as in Figure 1 for g = gray level (i.e., g(x,y)

=f(x,y)) and the following h's:

a) Laplacian magnitude

b) Gradient magnitude

c) Average gray level

d) Gray level of the right-hand neighbor

Parts (a-d) show the transforms based on joint frequencies, and

parts (e-h) those based on conditional frequencies. The histo-

grams for these pictures are shown in Figures 28-36. Many of

the second-order joint transforms resemble the first-order trans-

forms, but the second-order conditional transforms do not; the

P 7



latter yield some interesting enhancements (e.g., see the

chromosome picture). In most cases, however, the second-order

transforms do not appear to be as useful as the first-order

ones.

To further illustrate the usefulness of probability trans-

forms in smoothing, Figures 37 and 38 show five iterations of

a local weighted averaging scheme, where the weights given to

the neighbors of a given point depend on how high their joint or

conditional (gray level, gradient magnitude) frequencies are,

rather than on how similar their gray levels are. The results

are much better than those obtained in [21 based on gray level

f similarity.



4. Concluding remarks

This note has presented some generaliz~ations of Haralick's

"texture transform," and has discussed their possible uses and

limitations. Such transforms have potential applications to

image enhancement, noise cleaning and segmentation. They cer-

tainly provide new ways of looking at a picture which, in some

cases, may yield useful insights.

... ........
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Figure Captions

Figures

1-9 First-order probability transforms for a
set of pictures
a) Original
b) 3x3 local average
c) Roberts gradient magnitude
d) Laplacian magnitude
e-h) Probability transforms of (a-d)

10-18 Histograms of the pictures in Figures 1-9

19-27 Second-order probability transforms for the
pictures in Figures 1-9

a-d) Transforms based on joint frequencies
e-h) Transforms based on conditional frequencies
The first property is always the gray level;
the second is

a,e) Laplacian magnitude
b,f) Roberts gradient magnitude
c,g) 3x3 local average gray level
d,h) Gray level of right-hand neighbor

28-36 Histograms of the pictures in Figures 19-27

37 Noise cleaning by iterated weighted averaging,
where the weight given to each neighbor is
proportional to joint (gray level, gradient
magnitude) frequency

38 Analogous to Figure 37, using conditional
frequency
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